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Intrinsic noise-induced phase transitions: Beyond the noise interpretation
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We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are
qualitatively independent of the noise interpretatioid vs Stratonovich in particular in the context of
noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits
such ordering transitions when the noise is interpreted not only according to Stratonovich, but als@lte Ito
main feature of this model is the absence of a linear instability at the transition point. The dynamical properties
of the resulting noise-induced growth processes are studied and compared in the two interpretations and with
a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for
both interpretations is also presented.
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[. INTRODUCTION phenomena, in particular, concerning noise-induced ordering
transitions.

An important feature of nonlinear systems is their ability ~ As for a given stochastic differential equation with multi-
to sustain organized behavior even in the presence of a supficative noise, the results do depend on the interpretation, a
stantial amount of randomly fluctuating influences. Evenpreliminary analysis of the physical problem has to be per-
more strikingly, systems which in the absence of fluctuationgormed to make a judicious choice. Our experience indicates
exhibit a disordered behavior can experience, under certaitihat there are a minimum of three possible situations.
conditions, the emergence of spatiotemporal order upon ad- (1) If we start with a well established deterministic differ-
dition of a suitable amount of noisgl]. The most basic ential equation and some controlled parameter is allowed to
manifestation of this fact is the existence of ordering phasédluctuate (experimental or realistic external nojseone
transitions induced by noise in dynamical systems with spawould always expect the noise to have a high-frequency cut-
tial degrees of freedoi2,3]. These transitions bring the sys- off and as a consequence the Stratonovich interpretation is
tem from a disordered to an ordered phase as the intensity ofually argued to be the reasonable choice.
the noise increases, contrary to naive intuition. By disordered (2) If the starting scheme is a master equation which is
(ordered phase we mean for example the homogeneous zerapproximated by a Fokker-Planck equation, then one can
(nonzerg state corresponding to the coarse graining of a spirwrite a stochastic differential equation with multiplicative
field with random(uniform) orientation. noise in the Itainterpretation. This happens, for instance, in

Ordering phase transitions are usually driven by multipli-front propagation problems on a lattif@].
cative noise terms, which depend on the system'’s variables (3) Moreover, quite often our initial scheme is a set of
[4]. But the stochastic integrals associated with stochastistochastic differential equations, and we would like to sim-
differential equations with multiplicative noise are not plify the problem eliminating the most irrelevant fast vari-
uniquely defined5]. Among the many interpretations that ables(those with a very short-time scaléhe interpretation
can be given to these integrals, two are frequently used: thef the final stochastic differential equation will depend on the
Stratonovich interpretation that follows the standard rules obrder, in which this procedure is performed with respect to
calculus, but gives rise to nonintuitive statistical properties othe white-noise limit. This is indeed a nontrivial task.
the noise terms, and the” liaterpretation that avoids these  Since the Stratonovich drift can drastically modify the
problems, but at the expense of requiring new rules of calbehavior of systems, and since it may not always be obvious
culus. what the appropriate noise prescription is in a given problem,

Beyond the technical mathematical definitions, the physiit is particularly important to distinguish which noise effects
cal implications of both noise prescriptions boil down to anare intrinsic, in the sense of occurring regardless the noise
important fact. The Stratonovich prescription for white noiseinterpretation, and which ones are strictly associated to the
yields the result one would get for a time-correlated noise irStratonovich drift. In other words, it is important to elucidate
the limit of vanishing correlation time. The key point is that, when the noise interpretation may only affect the quantitative
as soon as the noise is slightly correlated, the stochastic vaidehavior, and when it may indeed change the problem at a
ables defined by the corresponding Langevin equation buildualitative level.
up correlations with the noise variable at equal time. This For the case of noise-induced phase transitions, the noise
immediately implies that the multiplicative noise terms in the prescription used so far in the literature is that of Stratonov-
equation have a nonzero mean, even with a zero-mean noigeh. Nevertheless, it could be argued that if the noise has an
The result is the so-called Stratonovich drift, a net force in-internal origin, one should, in principle, expect toise, too,
duced by noise which is at the heart of most noise-inducedo it would be good to establish whether, in the latter case,
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noise-induced transitions can occur. We will see that this istable interface which then drives the much slower domain-
indeed the case for a recently discovered class of noisegrowth dynamics. Since no Stratonovich drift is required to
induced phase transitions. From a theoretical point of view, iinduce this effectlas opposed, for instance, to the case of
is also important to deal with Ttaoise since then the con- Ref.[1] where it takes the form of an effective barjiéris to
tinuum white-noise limit is either well defined or less singu- Pe expected that the corresponding class of model exhibiting
lar than in the Stratonovich cafg]. This has important con- this behavior should also display noise-induced ordering in
sequences in order to establish when the macroscopf€ Ito interpretation. In this paper we show that this is in-
observables will carry out a nontrivial, singular dependencél€ed the case, by comparing the behavior of the model in-
on the spatial cutoff of the noisStratonovich caseand troduqed in Ref[l?] for both the Itoanc_i Stratonovich inter-
when such residual dependence will be wéid case [8]. pretations wlth_ that pf a standard Glnzburg-Lanc_iau quel
Few contributions have appeared in the physics literaturd/ith multiplicative noise(Sec. I). We also analyze in detail
on Itd calculus in extended systems. A comparative discust’® dynamical properties of the growth processes arising
sion about the mathematical problems involved in the twdfom the noise-induced ordering transitions in the two cases
interpretations appeared in Rg8]. The role of the multipli- (Sec. Il), which will be shown to share universal character-

cative noise in the ftinterpretation has been analyzed in theStics (i.e., growth exponentsout differ in nonuniversal fea-

context of spatiotemporal intermittenfy0] and front propa-  tUres(such as power-law prefactors-inally, algorithms that
gation [11]. Dynamical renormalization group calculations have been specially developed for generating the results pre-

were presented in Ref12]. However, noise-induced order- Sented in this paper, for both the Stratonovich andriter-
ing phase transitions had been reported so far only in thrétations, are described in detail in the Appendix.
framework of the Stratonovich interpretatiph—3]. In that

case, the mechanism underneath these transitions is that the Il. THEORETICAL ANALYSIS

multiplicative noise term has a nonzero average value, which

produces a short-time instability of the disordered phase and We will use a mo_dgl OT a.clags of systems fqr which the
induces the ordered phase to ari€3,13. The instability Steady-state probability distribution can be obtaieedctly

can be lineaf2,14] or nonlinear[3,15], but is in any case ﬁ\_sc?copseqtuence, thebeXfte(:jr?cg Of'ti phtase trg‘”s't'of‘ |r} thise
induced by the so-called Stratonovich shift. Due to the ab- INds ot systems can be studied without any dynamical ret-

sence of such a drift, the ltimterpretation does not present erence.

. o _ Our model corresponds to a relaxational flow in a free-
:gﬁytﬁge?;gzgié?g]uwd ordered phase, or any other Spaenergy potentialF({ ¢}), with a field-dependent kinetic co-

Recently, however, a new type of noise-induced phasgfficientl“(qb) and a fluctuating term fulfilling a fluctuation-

transition has been found which does not occur via an inStagc;ﬁzL?/?r:éogtor:rtaai(t)ig[;;]r;cia-lrkc]j?ﬁerrne%(:gl G'; ui?igrr‘fd by the

bility of the disordered phasel7]. Here, the ordered phase
arises due to the balance between the relaxing deterministic IR sF

i i X, - - -
forces pushing the system toward the disordered state, and =~ T(S(X1)) TR ))M2EX D).

the activating multiplicative fluctuations pulling the field ot Sp(x,t
away from that state, in a type of entropy-driven phase tran- (1)
sition (EDPT). This behavior is the spatiotemporal extension

of noise-induced transitions in purely temporal, zero-\we suppose that the noisgx,t) is Gaussian, with zero
dimensional systems, where the probability distribution ofmean and correlation

the time-dependent variable exhibits a change in the number

and type of its extrema as noise intensity vafie8]. A key (EXDEX 1)) =2028(X—X") B(t—t"), 2
idea in the model studied here is that the bimodality in the

stationary probability density is not associated to a potentialhere o2 is the noise intensity. Moreover, we choose the

barrier, but has a dynamical origin. In fact, the dependence %Ilowing form for the free-energy potentia,

the multiplicative noise term on the field is such that, for

sufficiently large noise strength, the system escapes more R R D . .

easily from the central region than from the sides, despite the F= f ddx{ V0(¢(x,t))+E[Vqﬁ(x,t)]2 . (€]

fact that the deterministic force always drives the system

towards the center. As a result the peaks of the probability . . . . .
density are off-center. An important difference with the usual Since we are dea}lm.g with .spat|ally uncor'related noise, we
bimodality associated to a potential barrier is that in our cas _erform_t_he analysis in a dls_crete space in o_rder to avoid
the characteristic relaxation time scales for the Zer0§!ngular|t|es[9]. '{} a d-dimensional square lattice of mesh
dimensional model are of order [19(¢%)] as opposed to sizeAx andN=L" cells, our model reads

O(exp(1£)) which is characteristic of activation processes, deb, JF

e being a generic measure of the noise strength. In the spa- PR AR
tially extended case, the spati@liffusive) coupling of the dt Lo
field introduces an additional crucial ingredient, namely, it .
freezes the domains impeding the fast relaxation process afhere only one index is used to label the celis= ¢(X;),
the zero-dimensional case. This gives rise to a well-defined;;=1"(¢;), and the noise satisfies the correlation

+ T2 (1), 4)
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5ii
<§i<t>§j<t'>>:202A—x’d6<t—t'>. (5)

In discrete space, the free energy has the form

> (b2,

N
FUeD=S | Vol
({4h) 21 O(d)')Jr4dAX2 jennt (i)

(6)

where the gradient term is approximated by the sum ove

nearest neighbors on the lattice in a standard v}iﬁymz
=3 cnnty(®j— ¢i)%Ax?, and nn*(i) stands for the

d-nearest neighbors ofin the positive direction of each axis.

For simplicity, we choose a monostable local potential

a
Vo(¢)=5 42 @

wherea>0. Finally, the kinetic coefficienf (¢) is taken to
depend on the field in the following wdt 7]:

I'(p)= 8

1+ce?
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Bo2 .
FRoD=FUgh+—5° | dinl(g0), (14

whereo= o?/ AxY stands for the effective noise intensity of
a spatially white noise in a discrete space.

We have thus seen that the stationary multivariate prob-
ability distribution can be obtained exactly in both thé Ito
and Stratonovich interpretations for the spatially extended
EDPT model, and that both lead to very similar qualitative
results. The only difference is an extra factor 2 in the new
{erm of the effective potential in the liaterpretation. As is
already knowr[17], the EDPT model presents a continuous
ordering noise-induced phase transition in the Stratonovich
interpretation. But according to the results shown above, and
as will be shown in the following section, this model also
exhibits anordering transition in the Iltointerpretation, al-
though the location of the critical point will be different. We
should remark here that, as in the case of the Stratonovich
interpretatior{ 17], this phase transition is not due to a short-
time instability of the homogeneous null phase. Indeed, the
linear equation for the first statistical momefip) can be
computed to bél]

o)

Y (15

D
=—[a+(2=B)ogcl(¢)+ 55V ¢)-

This functional dependence of the kinetic coefficient favors

diffusion due to fluctuations in the disordered state.
Our objective now is to study E@4) in the Stratonovich

Fora>0, the homogeneous null solution of this equation is
stable for all noise intensities, both f@=1 and B=2.

and Ifostochastic interpretations. The corresponding FokkerT herefore, the mechanism of this phase transition must be
Planck equation for the probability density of the field different from the standard one.

P({#},t) can be written in a unified notation for both inter-

pretationg 5],
aP d oF _ Bo? . .dl; a? 9
— = —|Ij=—P+—TY2—P+— —T,P|,
at zl (9¢i[ g Axd ' ddi Axd i
C)

whereB=1 for the Stratonovich interpretation aid=2 in
the Ito case.

If no probability flux is present, the stationary solutiBg
of Eq. (9) satisfies

oF . Bo? 9InT); . o? <9Pst_0 10
dgi  2Ax9 I | T Axd ddy
The solution of this equation is
P({g})~e Ferxo”, (11)

where we have introduced the effective free energy

N

Bo?
2 InT;.
2Ax9 =1

Fer({0})=F({o})+ (12

The above expressions can be written in continuum space

as

P({¢})~e e/, (13)

lll. STEADY-STATE BEHAVIOR

A standard way of determining the existence of a noise-
induced phase transition is by applying a mean-field approxi-
mation to the Langevin or Fokker-Planck equations of the
system[1,2]. In the present case, however, since we have
obtained the exact multivariate probability distribution in
both interpretations, we will implement that approximation
directly on the effective potential derived from Ed2).

The mean-field approximation consists of replacing the
exact value of the neighbor field in the Langevin or Fokker-
Planck equation by a common mean-field va{ye. In the
present case, we make such an identification in the neighbor-
ing values of the gradient term appearing in the effective free
energy[see Eqgs(6) and(12)]:

1

AX% §chnt i)

2d
(¢j—¢i)2%E(<¢>—¢i)2- (16)

In this way, the effective free energy becomes

Bo? D
Vo(oi)+ T'nr(%)m

N
Feﬁ<{¢},<¢>>=§l

N
X(¢i_<¢>)2] Eizl Ver( i ().
(17)
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FIG. 1. Phase diagram of the EDPT model, obtained from a FIG. 2. Mean-field and numerical simulation results for the
mean-field analysis, in the ltccontinuous ling and Stratonovich EDPT model in the ftdcontinuous ling and Stratonovickdashed
(dashed linginterpretations. The horizontal dotted line correspondsline) interpretations. Simulations have been performed for different
to the value ofD used in Fig. 2. The parameter values arel, system sizesl =16 (circles, L=24 (squares and L=232 (tri-
c=0.5, andAx=1. angle$ for It0, and L=64 (triangle3, L =48 (diamond$, L=32

(squarey andL =16 (circles for StratonovichD =4, and the rest
The unknown mean-field valug¢) is obtained self- of parameter values are those of the previous figure.
consistently, according to
derivation of this algorithm and a comparison with the well-
known Heun algorithm(derived only for the Stratonovich
interpretation is presented in the Appendix. The simulations
have been performed on a square lattice of>2366 cells of
where the one-site probability distribution Pg({¢})  mesh sizeAx=1, with a time stepAt=0.01 and periodic

(=] aPus (o0, a9

=111 ,Ps( ) is given by boundary conditions(except when explicitly indicated
. Where necessary, we have averaged over 10 realizations of
Po( )~ e Ver7 (19  the noise and the initial random conditions, corresponding to
S .

Gaussian or uniform distributions. In order to compute the
The mean-field predictions faf) in the two-dimensional Mean field, we first evaluate the spatial average of the sys-
case are plotted in Fig. 1, where lines separating the situd®™"
tions where(¢)=0 (disordej and{¢)+0 (ordep are plot-
ted for both the ltoand Stratonovich interpretations in the (p(1))= E
space of parametei® and o. The figure shows that both N
interpretations predict a continuous noise-induced ordering
phase transition, which occurs earlig®e., for lower noise WhereN is the number of lattice cells, angi(t) is the field
intensities in the Itocase. In particular, in the large coupling value at the cell. Once the spatial average reaches a station-
limit (D—oe) the transition in the fanterpretation takes ary state, the temporal average is evaluated as
place at a critical noise intensityr@za/Bc, for Ax=1), -
that is half the critical value in the Stratonovich case, both of (b)= EMJ (B(1) 21)
which coincide with the transition point in zero-dimensional Tv—Tm 57, '
systems(with noise intensityo?/ Ax?) [18].

Note that, in contrast with the usual noise-induced transiwhereT), andT,, delimit the time interval within the steady-
tions (which exhibit reentrant phenomenahe transition state regime in which the temporal average is calculated.
lines of Fig. 1 decay monotonically with®. This implies, ~ Afterwards, the realization average can be computed.
therefore, that no minimum coupling strength is required in  The numerical simulation results for the two interpreta-
these models for a phase transition to occur. tions are shown in Fig. 2, where they are also compared with

In order to validate the results obtained from the meanthe predictions coming from the mean-field approximation.
field approximation, we have performed extensive numericaDue to the value oD chosen, the agreement between the
simulations of mode{4)—(8) in both the lfoand Stratonovich mean-field estimate and the simulations is better for the Ito
interpretations. To that end, we have developed a new type afterpretation. In any case, the model exhibits a noise-
numerical algorithm suitable for the implementation of bothinduced ordering phase transition for both interpretations, as
stochastic interpretations of the multiplicative noise. Thepredicted by the mean-field approach.

N
El #i(1)], (20)
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FIG. 3. Bifurcation diagram of the Ginzburg-Landau model in
the 1to and Stratonovich interpretations. Both mean-field and 2D
simulation results are shown. The parameters used &80, a=
—0.2,b=1, D=4, and the additive noise intensity 0.5.

FIG. 4. Snapshots of evolving noise-induced domains for the

. . +a - EDPT model at =750 (left figure9 andt= 1750 (right figures in
We stress at this point that standard models exmbltm%e Ito (top) and Stratonovick{bottom interpretations. Parameters

noise-induced phase transitions caused by short-term ins;t‘,leea:1 c=3 02=35 andl—256
bilities of the disordered phase do so only in the case of the ' ' - '
Stratonovich interpretation. In order to illustrate this point,

we present here for comparison what hapoens in the well- In this section we are concerned with the growth of these
P omp ppens noise-induced domains. Although the mechanism that in-
known case of the Ginzburg-Landau model with external

multiplicative fluctuationg 3] duces the phase transition is different from those that ha\_/e
' been reported before, we can expect that, once the domains
d have appeared, their dynamics has the same characteristics as
¢ - - : .
—=ap—bp3+DV2p+pE(X,)+ p(xt), (22  those of the domain growth following the quench of a system
dt below its order-disorder transition temperature, as happens in
. R the Ginzburg-Landau modé19].
wheren(x,t) andé(x,t) are Gaussian and white noises. This  For nonconserved order parameter models, one of the do-
system presents a noise-induced phase transition if we intemains grows until it fills the whole system. The mechanism
pret the noise in the Stratonovich sense, but not if one usasnderlying domain growth in this case is the motion of the
the Ito interpretation. This can be seen in Fig. 3, where thenterface between domains caused by the interface structure.
two simulations share the same conditions and parameters. The translational velocity of the domain boundary has been
the Ito interpretation the ordered parame{er) remains al-  found to be proportional to the mean curvature of the bound-
ways in the disordered state, due to the fact that the noiseary, and independent of the free energy of the interface. This
dependent drift that causes the short-time instability is onlycan be quantified by the equation of motion obeyed by the
present in the the Stratonovich prescript{d®]. characteristic lengtfi.e., the average radiusf the domains
of equilibrium phasesR(t) [20],
IV. DOMAIN GROWTH DYNAMICS dR T
We have seen that the EDPT model in the presence of azAﬁ’
external fluctuations can reach a stationary ordered state de-
scribed by a nonzero order parameter), for both the Ifo  whereA is a model-dependent constant dnds the kinetic
and Stratonovich interpretations. This means that, if the syscoefficient multiplying the diffusion term. This expression
tem is initially in a disordered steady state)=0 corre- |eads in a straightforward way to the Allen-Cahn law of do-
sponding to a small noise intensity, as the intensity of extermain growth,
nal fluctuations is increased above its critical value the
system develops domains of the two new symmetric station- R(t)o 2ATtY2 (24)
ary ordered phases, that grow with time as shown in Fig. 4.
The figure shows that the system behaves differently in thén the time regime where this law is verifidd(t) is the only
two stochastic interpretations for the same noise intensitycharacteristic length of the system, and a scaling behavior for
the Ito case being much more contrasted due to the fact thats spatial structure at different times is found. All these re-
the order parameter is larger than in the Stratonovich caseylts are known to apply also in the case of standard noise-
which is very noisy. induced phase transitions caused by linear instabilities of the

(23
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FIG. 5. Scaled pair correlation function for the EDPT model in ~ FIG. 6. Allen-Cahn law for the CZ;L modésame parameter val-
the Stratonovich interpretation fdar=1300 (circles andt=2000  Ues asin Fig. 3 W'thf_z_lo_4 and 0°=0.6) and the EDPT model
(squarey and in the Ifointerpretation fort=1200 (triangles and for equal noise intensitie@nd dlf'ferent_me_an fieldsThe latter is
t=1800 (diamond$. The parameter values a@=1, c=3, D computed in both the Ttand Stratonovich interpretations. The pa-
=4, ¢2=35, andAx=1. rameter values for the EDPT model ame=1, c=3, D=4, ¢?

=3.5, andAx=1.

homogeneous disordered phddel|. We want to find out
whether the same thing happens in the EDPT described ipretations. Figure 6 presents this comparison for equal values
this paper. of the noise intensity. From these numerical results we can
In order to characterize the dynamics of mo@g| we let  conclude that the Allen-Cahn law is satisfied for the two
our system evolve from an initial disordered state, and cominterpretations, and that there is a time regime in which the
pute the isotropic correlatioG(r,t) function at different  system is self-similar. One interesting fact is that domain
times. We use the following normalization: evolution in lfois slower than in Stratonovich, and in both
cases much slower than the Ginzburg-Landau model. This
g(r,t)= G(r.b) _ (25) fact can be explained looking at the constant prefag@l’
G0 of the Allen-Cahn law(24). In the Ginzburg-Landau model

) ) ) ) ) . I'=1, butin the EDPT model this quantity is field dependent
Let us consider a time regime in which there is only one(g) and can be approximated by

characteristic lengtiR(t) in the system, which is related to
the average size of the domains. There are several possible

definitions forR(t), but all of them should lead to the same 1 1
results. We have chosé®(t) as the distance at whia(r,t) ~ N 5 (27
has half its maximum value. In this time regime, we can 1+c(¢%) 1+c(¢)
apply the scaling hypothesis fordadimensional system,
g(r,t)=g(r/R(t)), (26 According to this expression, and since for a fixetl we

have that{¢),>{¢)s, as a consequence we should expect

with no other explicit time dependence. When these relationthe slowest growth for the ItEDPT case, and the fastest one
hold, the spatial structure of the system at different times igor the Ginzburg-Landau model. This is what we can see in
statistically equivalent, except for a scale factor. Since thd-ig. 6.
domain growth is more clearly observed far from the critical In order to eliminate the influence of the stationary mean-
point, we have taken new parameter values accordingly. Thield value(¢) on the growth rate, we have compared the
numerical results in the Stratonovich interpretation for theevolution of the system under the two interpretations using in
scaled pair correlation function are represented in Fig. 5. Aeach case a different noise intensity, so that the mean field
shown in Ref[19], the pair correlation function exhibits a has the same value in the two cases. The results are shown in
discontinuity in its first derivative in the presence of noiseFig. 7, where we have fixef$)=3.15 for the two interpre-
sources. We have eliminated this discontinuity by fitting atations, for which we need?= 16 in the Stratonovich inter-
parabolic function in the originr(=0,Ax). The same study pretation and->=6 in the Ifointerpretation. As can be seen,
has been made in the case of Itderpretation under the in both interpretations the system seems to evolve at the
same conditions and parameters. same rhythm, although the slope in Igoslightly higher than

We now compare the temporal evolution of the characterin Stratonovich. We think that this small difference is due to
istic length of the systenR(t) for the two stochastic inter- the fact that althougl¢) is the same for both interpreta-
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_ FIG. 7. AIIen-Cahn_ Iavy for t_h_e EDPT model for equal mean  giG. 8. Transient evolution of the quantitgi, = ( p2(t) )/{ $)2,
fields (and different noise intensitigsunder both the thiandZStra- which measures the emergence of order from homogeneous initial
tonovich interpretations. For Stratonovietf=16, for 1to 0?=6.  conditiong=0. The letterl means the ftzase and the value of the
Other parameter values aae=1, c=0.5. intensity of the noise is inside the parentheses.

tions, the Stratonovich case is much more fluctuating, an
hence we have to expect a larges?) and accordingly a
lower slope.

%etween the two probability peaks. The fact that this transi-
tion occurs in a deterministic time scale in the zero-

dimensional case is what distinguishes the problem from the
usual, barrier-crossing bistability. In the spatially extended
V. COMMENTS AND CONCLUSIONS case, however, it is precisely the spatial coupling what gen-

It is worth commentina here that an effective model Canerates an effective barrier allowing for the formation of
g stable domains, with an interface-driven dynamics.

be developed which has the same stationary solutions as the In conclusion, we have presented a nonequilibrium field

EDPT model, but different dynamics. The dynamical €AU8model for which one can compute exactly the stationar
tion for this effective model witlAx=1 is P y y

probability distribution, and which exhibits an intrinsic
noise-induced ordering phase transition irrespective of the
V2¢+§(>?,t), (28) stochastic interpretation of the muItipIicativeAnoise term. In

particular, the phase transition is found in the ititerpreta-

tion, where so far, noise had only been seen to have a disor-
where, as beforeB is a parameter whose value indicates thedering effect. The same model can be studied changing the
interpretation that we are mimickind3& 1 for Stratonovich  diffusive term by the spatial coupling of the Swift-
andB=2 for Itd). The correlation of noise is given by Eq. Hohenberg model in which case a noise-induced pattern tran-
(2). The equation of motion of the mean value of the field insition is found[21]. These types of models do constitute a
the linear approximation is generalization of the Horsthemke-Lefever noise-induced

transitions to genuine noise inducptasetransitions in ex-
d{¢)

B ) D_, tended systems.
¢~ (Bofc—a)(d)+ 55 VH(9), (29)

d Bo?c D
at 1+cg? 2d
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fact has been checked numerically and it can be seen in Fig.

8. We can clt.aa'lrlly appre_ciate that the effective model has a APPENDIX: STOCHASTIC ALGORITHMS

much faster initial transient than the EDPT model, for the

same values of the parameters which is a signature of the Here we will derive an alternative algorithm that is an
different character of the instability of the initial state. While extension of the well-known Heun algorithm, valid for both
this observation applies also to the zero-dimensional versiothe Ito and Stratonovich interpretations of stochastic differ-
of the model, the crucial ingredient in our EDPT model is theential equations with multiplicative noise. Our aim is to
role of the spatial coupling, which prevents the fast transitiorsimulate numerically the following stochastic differential
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equation on a-dimensional lattice, Jt+mg(¢(t’))§(t’)dt’= g(¢i(t))+g(3i(t)))x.(t)
Ip(X,t) . L t ?
o~ @D, V)b EXD. (AL (A8)

Accordingly, the second equation of this algorithm is
First of all, we write this equation in a discrete space as

follows: ) (d
¢i<t+m):¢i(t)+f'("’(t));f'(¢(t))At
de¢(t)
=fi(d(1)+0i(d(1))&i(1), (A2) ~
dt . .
+<g(¢.<t>>;g(¢.<t)))xi(t)_ a9

wherei stands for the position inside the lattice, and the

noise correlation is given by E¢3). ___ Onthe other hand, in the Stratonovich calculus this integral
The first step in the derivation of the algorithm is to inte- ;g interpreted ag5]

grate formally Eq(A2) to get

trat Bi(t)+ (1)
t+At ! 4 I — - .
pt+an=g o+ [ s ar J, " stnea g( 2 )X'(t)’

‘ (A10)

+ Jtﬂtg((ﬁ(t’))g(t’)dt’. (A3)  so that the second equation of the algorithm is

t
The first integral in Eq.(A3) is evaluated according to a ¢i(t+At)=¢i(t)+fi(d)(t)Hfi(d)(t))At
second-order predictor-corrector algorithm, 2
- ¢i<t)+<7>i<t>)

i i —F—| X(1), All
¢i(t+m):¢i(t)+f.(¢(t))+f|(¢(t))m +g( 5 i(t) (A11)

2

t+ AL which is not exactly the standard Heun algorithm. This is the
+f g((t"))E(t)dt’, (A4) algorithm that has been used in this paper for the Stratonov-
t ich interpretation results. Its advantage is that, in contrast to
the Heun algorithm, our method has an analog in the Ito
where ¢(t) is the predictor term defined as the first-orderinterpretation, for which the same integral is definedss
solution of Eq.(A3),

t+ At
BO=d(O+Fi( AL G(BEIX . (AS) ft GiADE(T)A =g ($IN(D).  (A12)

This expression defines the first equation of the algorithmTherefore, the second equation of the algorithm in the Ito
which is independent of the stochastic interpretatiyit) is  interpretation reads
the Wiener process, defined as

fi(d(0)+fi(B(1))

« ftJrAt N A i(t+AL)=i(t)+ > At+gi((1)X(1).
(=] &)dt (AB) (A13)
and whose numerical implementation is Given these results, the algorithm proceeds by evaluating
first the predictor contributiofA5) and, using this value,
202At computing the corrector terr@A9), (A1l) or (A13), corre-
Xi(t)= i a;, (A7)  sponding to the Heun, Stratonovich, or labgorithms, re-

Ax? spectively. All these three different algorithms are approxi-

mations up to the same ordeisecond order in the
whereq; are independent Gaussian random numbers of zerdeterministic part but first order in the stochastic pehen
mean and unity variance, and they are implemented usingroperly expanded in powers aft. One can check that there
Ref.[22]. are no differences, up to these orders, between the Heun and
The second integral in EqA3) is not well defined, and Stratonovich algorithms, as it should be. Nevertheless,
one needs to make a prescription for its evaluation, at leaghe Stratonovich prescription has an extra term,

up to first order inAt. 1/29( ) g’ () Xi(1)?, with respect the tmne, which is of
The standard Heun algorithm works for the Stratonovichorder At. Our Ito algorithm also agrees with that presented
interpretation, and makes the following assumption: in Ref.[23] up to orderAt?.
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