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Intrinsic noise-induced phase transitions: Beyond the noise interpretation
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We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are
qualitatively independent of the noise interpretation~Itô vs Stratonovich!, in particular in the context of
noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits
such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itoˆ. The
main feature of this model is the absence of a linear instability at the transition point. The dynamical properties
of the resulting noise-induced growth processes are studied and compared in the two interpretations and with
a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for
both interpretations is also presented.
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I. INTRODUCTION

An important feature of nonlinear systems is their abil
to sustain organized behavior even in the presence of a
stantial amount of randomly fluctuating influences. Ev
more strikingly, systems which in the absence of fluctuatio
exhibit a disordered behavior can experience, under cer
conditions, the emergence of spatiotemporal order upon
dition of a suitable amount of noise@1#. The most basic
manifestation of this fact is the existence of ordering ph
transitions induced by noise in dynamical systems with s
tial degrees of freedom@2,3#. These transitions bring the sys
tem from a disordered to an ordered phase as the intensi
the noise increases, contrary to naive intuition. By disorde
~ordered! phase we mean for example the homogeneous
~nonzero! state corresponding to the coarse graining of a s
field with random~uniform! orientation.

Ordering phase transitions are usually driven by multip
cative noise terms, which depend on the system’s varia
@4#. But the stochastic integrals associated with stocha
differential equations with multiplicative noise are n
uniquely defined@5#. Among the many interpretations tha
can be given to these integrals, two are frequently used:
Stratonovich interpretation that follows the standard rules
calculus, but gives rise to nonintuitive statistical properties
the noise terms, and the Itoˆ interpretation that avoids thes
problems, but at the expense of requiring new rules of c
culus.

Beyond the technical mathematical definitions, the phy
cal implications of both noise prescriptions boil down to
important fact. The Stratonovich prescription for white no
yields the result one would get for a time-correlated noise
the limit of vanishing correlation time. The key point is tha
as soon as the noise is slightly correlated, the stochastic
ables defined by the corresponding Langevin equation b
up correlations with the noise variable at equal time. T
immediately implies that the multiplicative noise terms in t
equation have a nonzero mean, even with a zero-mean n
The result is the so-called Stratonovich drift, a net force
duced by noise which is at the heart of most noise-indu
1063-651X/2003/67~4!/046110~9!/$20.00 67 0461
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phenomena, in particular, concerning noise-induced orde
transitions.

As for a given stochastic differential equation with mul
plicative noise, the results do depend on the interpretatio
preliminary analysis of the physical problem has to be p
formed to make a judicious choice. Our experience indica
that there are a minimum of three possible situations.

~1! If we start with a well established deterministic diffe
ential equation and some controlled parameter is allowe
fluctuate ~experimental or realistic external noise!, one
would always expect the noise to have a high-frequency
off and as a consequence the Stratonovich interpretatio
usually argued to be the reasonable choice.

~2! If the starting scheme is a master equation which
approximated by a Fokker-Planck equation, then one
write a stochastic differential equation with multiplicativ
noise in the Itoˆ interpretation. This happens, for instance,
front propagation problems on a lattice@6#.

~3! Moreover, quite often our initial scheme is a set
stochastic differential equations, and we would like to si
plify the problem eliminating the most irrelevant fast va
ables~those with a very short-time scale!. The interpretation
of the final stochastic differential equation will depend on t
order, in which this procedure is performed with respect
the white-noise limit. This is indeed a nontrivial task.

Since the Stratonovich drift can drastically modify th
behavior of systems, and since it may not always be obvi
what the appropriate noise prescription is in a given proble
it is particularly important to distinguish which noise effec
are intrinsic, in the sense of occurring regardless the no
interpretation, and which ones are strictly associated to
Stratonovich drift. In other words, it is important to elucida
when the noise interpretation may only affect the quantitat
behavior, and when it may indeed change the problem
qualitative level.

For the case of noise-induced phase transitions, the n
prescription used so far in the literature is that of Straton
ich. Nevertheless, it could be argued that if the noise has
internal origin, one should, in principle, expect Itoˆ noise, too,
so it would be good to establish whether, in the latter ca
©2003 The American Physical Society10-1
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noise-induced transitions can occur. We will see that thi
indeed the case for a recently discovered class of no
induced phase transitions. From a theoretical point of view
is also important to deal with Itoˆ noise since then the con
tinuum white-noise limit is either well defined or less sing
lar than in the Stratonovich case@7#. This has important con
sequences in order to establish when the macrosc
observables will carry out a nontrivial, singular dependen
on the spatial cutoff of the noise~Stratonovich case! and
when such residual dependence will be weak~Itô case! @8#.

Few contributions have appeared in the physics litera
on Itô calculus in extended systems. A comparative disc
sion about the mathematical problems involved in the t
interpretations appeared in Ref.@9#. The role of the multipli-
cative noise in the Itoˆ interpretation has been analyzed in t
context of spatiotemporal intermittency@10# and front propa-
gation @11#. Dynamical renormalization group calculation
were presented in Ref.@12#. However, noise-induced orde
ing phase transitions had been reported so far only in
framework of the Stratonovich interpretation@1–3#. In that
case, the mechanism underneath these transitions is tha
multiplicative noise term has a nonzero average value, wh
produces a short-time instability of the disordered phase
induces the ordered phase to arise@2,3,13#. The instability
can be linear@2,14# or nonlinear@3,15#, but is in any case
induced by the so-called Stratonovich shift. Due to the
sence of such a drift, the Itoˆ interpretation does not prese
this type of noise-induced ordered phase, or any other
tially ordered state@16#.

Recently, however, a new type of noise-induced ph
transition has been found which does not occur via an in
bility of the disordered phase@17#. Here, the ordered phas
arises due to the balance between the relaxing determin
forces pushing the system toward the disordered state,
the activating multiplicative fluctuations pulling the fie
away from that state, in a type of entropy-driven phase tr
sition ~EDPT!. This behavior is the spatiotemporal extensi
of noise-induced transitions in purely temporal, ze
dimensional systems, where the probability distribution
the time-dependent variable exhibits a change in the num
and type of its extrema as noise intensity varies@18#. A key
idea in the model studied here is that the bimodality in
stationary probability density is not associated to a poten
barrier, but has a dynamical origin. In fact, the dependenc
the multiplicative noise term on the field is such that, f
sufficiently large noise strength, the system escapes m
easily from the central region than from the sides, despite
fact that the deterministic force always drives the syst
towards the center. As a result the peaks of the probab
density are off-center. An important difference with the us
bimodality associated to a potential barrier is that in our c
the characteristic relaxation time scales for the ze
dimensional model are of order 1@O(«0)# as opposed to
O„exp(1/«)… which is characteristic of activation processe
« being a generic measure of the noise strength. In the
tially extended case, the spatial~diffusive! coupling of the
field introduces an additional crucial ingredient, namely
freezes the domains impeding the fast relaxation proces
the zero-dimensional case. This gives rise to a well-defin
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stable interface which then drives the much slower doma
growth dynamics. Since no Stratonovich drift is required
induce this effect~as opposed, for instance, to the case
Ref. @1# where it takes the form of an effective barrier! it is to
be expected that the corresponding class of model exhibi
this behavior should also display noise-induced ordering
the Itô interpretation. In this paper we show that this is i
deed the case, by comparing the behavior of the model
troduced in Ref.@17# for both the Itôand Stratonovich inter-
pretations with that of a standard Ginzburg-Landau mo
with multiplicative noise~Sec. II!. We also analyze in detai
the dynamical properties of the growth processes aris
from the noise-induced ordering transitions in the two ca
~Sec. III!, which will be shown to share universal characte
istics ~i.e., growth exponents! but differ in nonuniversal fea-
tures~such as power-law prefactors!. Finally, algorithms that
have been specially developed for generating the results
sented in this paper, for both the Stratonovich and Itoˆ inter-
pretations, are described in detail in the Appendix.

II. THEORETICAL ANALYSIS

We will use a model of a class of systems for which t
steady-state probability distribution can be obtainedexactly.
As a consequence, the existence of a phase transition in t
kinds of systems can be studied without any dynamical
erence.

Our model corresponds to a relaxational flow in a fre
energy potentialF($f%), with a field-dependent kinetic co
efficient G(f) and a fluctuating term fulfilling a fluctuation
dissipation relation@17#. The model is defined by the
following stochastic partial differential equation:

]f~xW ,t !

]t
52G„f~xW ,t !…

dF
df~xW ,t !

1G„f~xW ,t !…1/2j~xW ,t !.

~1!

We suppose that the noisej(xW ,t) is Gaussian, with zero
mean and correlation

^j~xW ,t !j~xW8,t8!&52s2d~xW2xW8!d~ t2t8!, ~2!

where s2 is the noise intensity. Moreover, we choose t
following form for the free-energy potentialF,

F5E ddxW H V0„f~xW ,t !…1
D

4d
@¹W f~xW ,t !#2J . ~3!

Since we are dealing with spatially uncorrelated noise,
perform the analysis in a discrete space in order to av
singularities@9#. In a d-dimensional square lattice of mes
sizeDx andN5Ld cells, our model reads

df i

dt
52G i

]F

]f i
1G i

1/2j i~ t !, ~4!

where only one index is used to label the cells,f i[f(xW i),
G i[G(f i), and the noise satisfies the correlation
0-2
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INTRINSIC NOISE-INDUCED PHASE TRANSITIONS: . . . PHYSICAL REVIEW E 67, 046110 ~2003!
^j i~ t !j j~ t8!&52s2
d i j

Dxd
d~ t2t8!. ~5!

In discrete space, the free energy has the form

F~$f%!5(
i 51

N FV0~f i !1
D

4dDx2 (
j Pnn1( i )

~f j2f i !
2G ,

~6!

where the gradient term is approximated by the sum o
nearest neighbors on the lattice in a standard way,u¹W fu2
→( j Pnn1( i )(f j2f i)

2/Dx2, and nn1( i ) stands for the
d-nearest neighbors ofi in the positive direction of each axis
For simplicity, we choose a monostable local potential

V0~f!5
a

2
f2, ~7!

wherea.0. Finally, the kinetic coefficientG(f) is taken to
depend on the field in the following way@17#:

G~f!5
1

11cf2
. ~8!

This functional dependence of the kinetic coefficient fav
diffusion due to fluctuations in the disordered state.

Our objective now is to study Eq.~4! in the Stratonovich
and Itôstochastic interpretations. The corresponding Fokk
Planck equation for the probability density of the fie
P($f%,t) can be written in a unified notation for both inte
pretations@5#,

]P

]t
5(

i

]

]f i
FG i

]F

]f i
P1

Bs2

Dxd
G i

1/2]G i

]f i
P1

s2

Dxd

]

]f i
G i PG ,

~9!

whereB51 for the Stratonovich interpretation andB52 in
the Itô case.

If no probability flux is present, the stationary solutionPst
of Eq. ~9! satisfies

S ]F

]f i
1

Bs2

2Dxd

] ln G i

]f i
D Pst1

s2

Dxd

]Pst

]f i
50. ~10!

The solution of this equation is

Pst~$f%!;e2FeffDxd/s2
, ~11!

where we have introduced the effective free energy

Feff~$f%![F~$f%!1
Bs2

2Dxd (
i 51

N

ln G i . ~12!

The above expressions can be written in continuum sp
as

Pst~$f%!;e2Feff /s2
, ~13!
04611
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S ~$f%![F~$f%!1

Bs0
2

2 E ddx ln G„f~xW !…, ~14!

wheres0
2[s2/Dxd stands for the effective noise intensity o

a spatially white noise in a discrete space.
We have thus seen that the stationary multivariate pr

ability distribution can be obtained exactly in both the Iˆ
and Stratonovich interpretations for the spatially extend
EDPT model, and that both lead to very similar qualitati
results. The only difference is an extra factor 2 in the n
term of the effective potential in the Itoˆ interpretation. As is
already known@17#, the EDPT model presents a continuo
ordering noise-induced phase transition in the Stratonov
interpretation. But according to the results shown above,
as will be shown in the following section, this model als
exhibits anordering transition in the Itoˆ interpretation, al-
though the location of the critical point will be different. W
should remark here that, as in the case of the Stratono
interpretation@17#, this phase transition is not due to a sho
time instability of the homogeneous null phase. Indeed,
linear equation for the first statistical moment^f& can be
computed to be@1#

]^f&
]t

52@a1~22B!s0
2c#^f&1

D

2d
¹2^f&. ~15!

For a.0, the homogeneous null solution of this equation
stable for all noise intensities, both forB51 and B52.
Therefore, the mechanism of this phase transition mus
different from the standard one.

III. STEADY-STATE BEHAVIOR

A standard way of determining the existence of a noi
induced phase transition is by applying a mean-field appro
mation to the Langevin or Fokker-Planck equations of
system@1,2#. In the present case, however, since we ha
obtained the exact multivariate probability distribution
both interpretations, we will implement that approximatio
directly on the effective potential derived from Eq.~12!.

The mean-field approximation consists of replacing
exact value of the neighbor field in the Langevin or Fokk
Planck equation by a common mean-field value^f&. In the
present case, we make such an identification in the neigh
ing values of the gradient term appearing in the effective f
energy@see Eqs.~6! and ~12!#:

1

Dx2 (
j Pnn1( i )

~f j2f i !
2'

2d

Dx2
~^f&2f i !

2. ~16!

In this way, the effective free energy becomes

Feff~$f%,^f&!5(
i 51

N H V0~f i !1
Bs0

2

2
ln G~f i !

D

2Dx2

3~f i2^f&!2J [(
i 51

N

Veff~f i ,^f&!.

~17!
0-3
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CARRILLO et al. PHYSICAL REVIEW E 67, 046110 ~2003!
The unknown mean-field valuêf& is obtained self-
consistently, according to

^f&5E
2`

`

fPst~f,^f&!, ~18!

where the one-site probability distribution (Pst($f%)
5) i 51

N Pst(f i)) is given by

Pst~f!;e2Veff /s0
2
. ~19!

The mean-field predictions for̂f& in the two-dimensional
case are plotted in Fig. 1, where lines separating the si
tions wherê f&50 ~disorder! and ^f&Þ0 ~order! are plot-
ted for both the Itoˆ and Stratonovich interpretations in th
space of parametersD and s2. The figure shows that both
interpretations predict a continuous noise-induced orde
phase transition, which occurs earlier~i.e., for lower noise
intensities! in the Itôcase. In particular, in the large couplin
limit ( D→`) the transition in the Itoˆ interpretation takes
place at a critical noise intensity (sc

25a/Bc, for Dx51),
that is half the critical value in the Stratonovich case, both
which coincide with the transition point in zero-dimension
systems~with noise intensitys2/Dx2) @18#.

Note that, in contrast with the usual noise-induced tran
tions ~which exhibit reentrant phenomena!, the transition
lines of Fig. 1 decay monotonically withs2. This implies,
therefore, that no minimum coupling strength is required
these models for a phase transition to occur.

In order to validate the results obtained from the me
field approximation, we have performed extensive numer
simulations of model~4!–~8! in both the Itôand Stratonovich
interpretations. To that end, we have developed a new typ
numerical algorithm suitable for the implementation of bo
stochastic interpretations of the multiplicative noise. T

FIG. 1. Phase diagram of the EDPT model, obtained from
mean-field analysis, in the Itoˆ ~continuous line! and Stratonovich
~dashed line! interpretations. The horizontal dotted line correspon
to the value ofD used in Fig. 2. The parameter values area51,
c50.5, andDx51.
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derivation of this algorithm and a comparison with the we
known Heun algorithm~derived only for the Stratonovich
interpretation! is presented in the Appendix. The simulatio
have been performed on a square lattice of 2563256 cells of
mesh sizeDx51, with a time stepDt50.01 and periodic
boundary conditions~except when explicitly indicated!.
Where necessary, we have averaged over 10 realization
the noise and the initial random conditions, corresponding
Gaussian or uniform distributions. In order to compute t
mean field, we first evaluate the spatial average of the s
tem:

^f~ t !&5
1

NU(
i 51

N

f i~ t !U, ~20!

whereN is the number of lattice cells, andf i(t) is the field
value at thei cell. Once the spatial average reaches a stat
ary state, the temporal average is evaluated as

^f&5
1

TM2Tm
(

t5Tm

TM

^f~ t !&, ~21!

whereTM andTm delimit the time interval within the steady
state regime in which the temporal average is calcula
Afterwards, the realization average can be computed.

The numerical simulation results for the two interpre
tions are shown in Fig. 2, where they are also compared w
the predictions coming from the mean-field approximatio
Due to the value ofD chosen, the agreement between t
mean-field estimate and the simulations is better for theˆ
interpretation. In any case, the model exhibits a noi
induced ordering phase transition for both interpretations
predicted by the mean-field approach.

a

s

FIG. 2. Mean-field and numerical simulation results for t
EDPT model in the Itoˆ ~continuous line! and Stratonovich~dashed
line! interpretations. Simulations have been performed for differ
system sizes:L516 ~circles!, L524 ~squares!, and L532 ~tri-
angles! for Itô, and L564 ~triangles!, L548 ~diamonds!, L532
~squares!, andL516 ~circles! for Stratonovich.D54, and the rest
of parameter values are those of the previous figure.
0-4
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INTRINSIC NOISE-INDUCED PHASE TRANSITIONS: . . . PHYSICAL REVIEW E 67, 046110 ~2003!
We stress at this point that standard models exhibit
noise-induced phase transitions caused by short-term in
bilities of the disordered phase do so only in the case of
Stratonovich interpretation. In order to illustrate this poi
we present here for comparison what happens in the w
known case of the Ginzburg-Landau model with exter
multiplicative fluctuations@3#:

df

dt
5af2bf31D¹2f1fj~xW ,t !1h~xW ,t !, ~22!

whereh(xW ,t) andj(xW ,t) are Gaussian and white noises. Th
system presents a noise-induced phase transition if we in
pret the noise in the Stratonovich sense, but not if one u
the Itô interpretation. This can be seen in Fig. 3, where
two simulations share the same conditions and parameter
the Itô interpretation the ordered parameter^f& remains al-
ways in the disordered state, due to the fact that the no
dependent drift that causes the short-time instability is o
present in the the Stratonovich prescription@16#.

IV. DOMAIN GROWTH DYNAMICS

We have seen that the EDPT model in the presence
external fluctuations can reach a stationary ordered state
scribed by a nonzero order parameter^f&, for both the Itô
and Stratonovich interpretations. This means that, if the s
tem is initially in a disordered steady state^f&50 corre-
sponding to a small noise intensity, as the intensity of ex
nal fluctuations is increased above its critical value
system develops domains of the two new symmetric stat
ary ordered phases, that grow with time as shown in Fig
The figure shows that the system behaves differently in
two stochastic interpretations for the same noise intens
the Itô case being much more contrasted due to the fact
the order parameter is larger than in the Stratonovich c
which is very noisy.

FIG. 3. Bifurcation diagram of the Ginzburg-Landau model
the Itô and Stratonovich interpretations. Both mean-field and
simulation results are shown. The parameters used areL530, a5
20.2, b51, D54, and the additive noise intensity 0.5.
04611
g
ta-
e

,
ll-
l

er-
es
e
In

e-
y

of
e-

s-

r-
e
n-
4.
e
y,
at
e,

In this section we are concerned with the growth of the
noise-induced domains. Although the mechanism that
duces the phase transition is different from those that h
been reported before, we can expect that, once the dom
have appeared, their dynamics has the same characterist
those of the domain growth following the quench of a syst
below its order-disorder transition temperature, as happen
the Ginzburg-Landau model@19#.

For nonconserved order parameter models, one of the
mains grows until it fills the whole system. The mechanis
underlying domain growth in this case is the motion of t
interface between domains caused by the interface struc
The translational velocity of the domain boundary has be
found to be proportional to the mean curvature of the bou
ary, and independent of the free energy of the interface. T
can be quantified by the equation of motion obeyed by
characteristic length~i.e., the average radius! of the domains
of equilibrium phases,R(t) @20#,

dR

dt
5A

G

R
, ~23!

whereA is a model-dependent constant andG is the kinetic
coefficient multiplying the diffusion term. This expressio
leads in a straightforward way to the Allen-Cahn law of d
main growth,

R~ t !}A2AGt1/2. ~24!

In the time regime where this law is verified,R(t) is the only
characteristic length of the system, and a scaling behavio
its spatial structure at different times is found. All these
sults are known to apply also in the case of standard no
induced phase transitions caused by linear instabilities of

FIG. 4. Snapshots of evolving noise-induced domains for
EDPT model att5750 ~left figures! and t51750 ~right figures! in
the Itô ~top! and Stratonovich~bottom! interpretations. Parameter
area51, c53, s253.5, andL5256.
0-5
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CARRILLO et al. PHYSICAL REVIEW E 67, 046110 ~2003!
homogeneous disordered phase@14#. We want to find out
whether the same thing happens in the EDPT describe
this paper.

In order to characterize the dynamics of model~4!, we let
our system evolve from an initial disordered state, and co
pute the isotropic correlationG(r ,t) function at different
times. We use the following normalization:

g~r ,t !5
G~r ,t !

G~0,t !
. ~25!

Let us consider a time regime in which there is only o
characteristic lengthR(t) in the system, which is related t
the average size of the domains. There are several pos
definitions forR(t), but all of them should lead to the sam
results. We have chosenR(t) as the distance at whichg(r ,t)
has half its maximum value. In this time regime, we c
apply the scaling hypothesis for ad-dimensional system,

g~r ,t !5g„r /R~ t !…, ~26!

with no other explicit time dependence. When these relati
hold, the spatial structure of the system at different time
statistically equivalent, except for a scale factor. Since
domain growth is more clearly observed far from the critic
point, we have taken new parameter values accordingly.
numerical results in the Stratonovich interpretation for
scaled pair correlation function are represented in Fig. 5.
shown in Ref.@19#, the pair correlation function exhibits
discontinuity in its first derivative in the presence of noi
sources. We have eliminated this discontinuity by fitting
parabolic function in the origin (r 50,Dx). The same study
has been made in the case of Itoˆ interpretation under the
same conditions and parameters.

We now compare the temporal evolution of the charac
istic length of the systemR(t) for the two stochastic inter

FIG. 5. Scaled pair correlation function for the EDPT model
the Stratonovich interpretation fort51300 ~circles! and t52000
~squares!, and in the Itoˆ interpretation fort51200 ~triangles! and
t51800 ~diamonds!. The parameter values area51, c53, D
54, s253.5, andDx51.
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pretations. Figure 6 presents this comparison for equal va
of the noise intensity. From these numerical results we
conclude that the Allen-Cahn law is satisfied for the tw
interpretations, and that there is a time regime in which
system is self-similar. One interesting fact is that dom
evolution in Itô is slower than in Stratonovich, and in bot
cases much slower than the Ginzburg-Landau model. T
fact can be explained looking at the constant prefactorA2AG
of the Allen-Cahn law~24!. In the Ginzburg-Landau mode
G51, but in the EDPT model this quantity is field depende
~8!, and can be approximated by

G'
1

11c^f2&
'

1

11c^f&2
. ~27!

According to this expression, and since for a fixeds2 we
have that̂ f& I.^f&S , as a consequence we should exp
the slowest growth for the Itoˆ EDPT case, and the fastest on
for the Ginzburg-Landau model. This is what we can see
Fig. 6.

In order to eliminate the influence of the stationary mea
field value ^f& on the growth rate, we have compared t
evolution of the system under the two interpretations using
each case a different noise intensity, so that the mean
has the same value in the two cases. The results are show
Fig. 7, where we have fixed̂f&53.15 for the two interpre-
tations, for which we needs2516 in the Stratonovich inter-
pretation ands256 in the Itôinterpretation. As can be seen
in both interpretations the system seems to evolve at
same rhythm, although the slope in Itoˆ is slightly higher than
in Stratonovich. We think that this small difference is due
the fact that althougĥf& is the same for both interpreta

FIG. 6. Allen-Cahn law for the GL model~same parameter val
ues as in Fig. 3 withe51024 ands250.6) and the EDPT mode
for equal noise intensities~and different mean fields!. The latter is
computed in both the Itoˆ and Stratonovich interpretations. The p
rameter values for the EDPT model area51, c53, D54, s2

53.5, andDx51.
0-6
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tions, the Stratonovich case is much more fluctuating,
hence we have to expect a larger^f2& and accordingly a
lower slope.

V. COMMENTS AND CONCLUSIONS

It is worth commenting here that an effective model c
be developed which has the same stationary solutions a
EDPT model, but different dynamics. The dynamical eq
tion for this effective model withDx51 is

]f

]t
52af1

Bs2cf

11cf2
1

D

2d
¹2f1j~xW ,t !, ~28!

where, as before,B is a parameter whose value indicates t
interpretation that we are mimicking (B51 for Stratonovich
and B52 for Itô!. The correlation of noise is given by Eq
~2!. The equation of motion of the mean value of the field
the linear approximation is

d^f&
dt

5~Bs2c2a!^f&1
D

2d
¹2^f&, ~29!

which tells us that, fors2.a/Bc, the homogeneous phas
^f&50 is unstable. This instability does not appear in t
EDPT model@see Eq.~15!#. According to this result, we
have to expect an initial transient faster in this model~as in
the Ginzburg-Landau model! than in the EDPT cases. Thi
fact has been checked numerically and it can be seen in
8. We can clearly appreciate that the effective model ha
much faster initial transient than the EDPT model, for t
same values of the parameters which is a signature of
different character of the instability of the initial state. Whi
this observation applies also to the zero-dimensional ver
of the model, the crucial ingredient in our EDPT model is t
role of the spatial coupling, which prevents the fast transit

FIG. 7. Allen-Cahn law for the EDPT model for equal me
fields ~and different noise intensities!, under both the Itoˆ and Stra-
tonovich interpretations. For Stratonovichs2516, for Itô s256.
Other parameter values area51, c50.5.
04611
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between the two probability peaks. The fact that this tran
tion occurs in a deterministic time scale in the zer
dimensional case is what distinguishes the problem from
usual, barrier-crossing bistability. In the spatially extend
case, however, it is precisely the spatial coupling what g
erates an effective barrier allowing for the formation
stable domains, with an interface-driven dynamics.

In conclusion, we have presented a nonequilibrium fi
model for which one can compute exactly the station
probability distribution, and which exhibits an intrinsi
noise-induced ordering phase transition irrespective of
stochastic interpretation of the multiplicative noise term.
particular, the phase transition is found in the Itoˆ interpreta-
tion, where so far, noise had only been seen to have a d
dering effect. The same model can be studied changing
diffusive term by the spatial coupling of the Swif
Hohenberg model in which case a noise-induced pattern t
sition is found@21#. These types of models do constitute
generalization of the Horsthemke-Lefever noise-induc
transitions to genuine noise inducedphasetransitions in ex-
tended systems.
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APPENDIX: STOCHASTIC ALGORITHMS

Here we will derive an alternative algorithm that is a
extension of the well-known Heun algorithm, valid for bo
the Itô and Stratonovich interpretations of stochastic diffe
ential equations with multiplicative noise. Our aim is
simulate numerically the following stochastic differenti

FIG. 8. Transient evolution of the quantitym25^f2(t)&/^f&st
2

which measures the emergence of order from homogeneous in
conditionf50. The letterI means the Itoˆ case and the value of th
intensity of the noise is inside the parentheses.
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equation on ad-dimensional lattice,

]f~xW ,t !

]t
5 f „f~xW ,t !,¹…1g„f~xW ,t !…j~xW ,t !. ~A1!

First of all, we write this equation in a discrete space
follows:

df i~ t !

dt
5 f i„f~ t !…1gi„f~ t !…j i~ t !, ~A2!

where i stands for the position inside the lattice, and t
noise correlation is given by Eq.~5!.

The first step in the derivation of the algorithm is to int
grate formally Eq.~A2! to get

f i~ t1Dt !5f i~ t !1E
t

t1Dt

f i„f~ t8!…dt8

1E
t

t1Dt

g„f~ t8!…j~ t8!dt8. ~A3!

The first integral in Eq.~A3! is evaluated according to
second-order predictor-corrector algorithm,

f i~ t1Dt !5f i~ t !1
f i„f~ t !…1 f i~f̃~ t !!

2
Dt

1E
t

t1Dt

g„f~ t8!…j~ t8!dt8, ~A4!

where f̃(t) is the predictor term defined as the first-ord
solution of Eq.~A3!,

f̃ i~ t !5f i~ t !1 f i„f i~ t !…Dt1gi„f~ t !…Xi . ~A5!

This expression defines the first equation of the algorith
which is independent of the stochastic interpretation.Xi(t) is
the Wiener process, defined as

Xi~ t !5E
t

t1Dt

j i~ t8!dt8 ~A6!

and whose numerical implementation is

Xi~ t !5A2s2Dt

Dx2
a i , ~A7!

wherea i are independent Gaussian random numbers of z
mean and unity variance, and they are implemented u
Ref. @22#.

The second integral in Eq.~A3! is not well defined, and
one needs to make a prescription for its evaluation, at le
up to first order inDt.

The standard Heun algorithm works for the Stratonov
interpretation, and makes the following assumption:
04611
s

r
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g
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E
t

t1Dt

g„f~ t8!…j~ t8!dt85S g„f i~ t !…1g„f̃ i~ t !…

2
DXi~ t !.

~A8!

Accordingly, the second equation of this algorithm is

f i~ t1Dt !5f i~ t !1
f i„f~ t !…1 f i„f̃~ t !…

2
Dt

1S g„f i~ t !…1g„f̃ i~ t !…

2
DXi~ t !. ~A9!

On the other hand, in the Stratonovich calculus this integ
is interpreted as@5#

E
t

t1Dt

g„f~ t8!…j~ t8!dt85gS f i~ t !1f̃ i~ t !

2
DXi~ t !,

~A10!

so that the second equation of the algorithm is

f i~ t1Dt !5f i~ t !1
f i„f~ t !…1 f i„f̃~ t !…

2
Dt

1gS f i~ t !1f̃ i~ t !

2
DXi~ t !, ~A11!

which is not exactly the standard Heun algorithm. This is
algorithm that has been used in this paper for the Straton
ich interpretation results. Its advantage is that, in contras
the Heun algorithm, our method has an analog in theˆ
interpretation, for which the same integral is defined as@5#

E
t

t1Dt

gi„f~ t8!…j i~ t8!dt85gi„f~ t !…Xi~ t !. ~A12!

Therefore, the second equation of the algorithm in theˆ
interpretation reads

f i~ t1Dt !5f i~ t !1
f i„f~ t !…1 f i„f̃~ t !…

2
Dt1gi„f~ t !…Xi~ t !.

~A13!

Given these results, the algorithm proceeds by evalua
first the predictor contribution~A5! and, using this value
computing the corrector term~A9!, ~A11! or ~A13!, corre-
sponding to the Heun, Stratonovich, or Itoˆ algorithms, re-
spectively. All these three different algorithms are appro
mations up to the same order~second order in the
deterministic part but first order in the stochastic one!, when
properly expanded in powers ofDt. One can check that ther
are no differences, up to these orders, between the Heun
Stratonovich algorithms, as it should be. Neverthele
the Stratonovich prescription has an extra ter
1/2g(f i)g8(f i)Xi(t)

2, with respect the Itoˆ one, which is of
orderDt. Our Itô algorithm also agrees with that present
in Ref. @23# up to orderDt2.
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@17# M. Ibañes, J. Garcı´a-Ojalvo, R. Toral, and J.M. Sancho, Phy

Rev. Lett.87, 020601~2001!.
@18# W. Horsthemke and R. Lefever,Noise-induced Transitions

~Springer, Berlin, 1984!.
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